99re6这里有精品热视频,久久综合九色欧美综合狠狠,国产精品久久久久久无毒不卡,av免费无插件在线观看,欧美放荡办公室videos

  1. 創(chuàng)業(yè)頭條
  2. 前沿領域
  3. 人工智能
  4. 正文

從幾個業(yè)務場景和實際案例,看生成式AI在金融領域的應用

 2023-05-02 17:50  來源:A5專欄  我來投稿 撤稿糾錯

  阿里云優(yōu)惠券 先領券再下單

摩根士丹利等機構都已引入ChatGPT,生成式AI在金融領域所有哪些應用?

生成式AI在金融領域有哪些應用?具備什么優(yōu)勢?面臨什么挑戰(zhàn)?一文看懂

從幾個業(yè)務場景和實際案例,看生成式AI在金融領域的應用

ChatGPT推出隱私功能,歐盟加速制定新規(guī),生成式AI在金融領域前景廣闊

文/王吉偉

金融領域對于應用生成式AI的態(tài)度,現(xiàn)在分成了兩派。

因為數(shù)據(jù)泄露等問題,美國銀行、花旗集團和高盛等大銀行已在2月下旬迅速限制員工使用ChatGPT。

但其他金融公司,仍舊在生成式AI的應用上積極探索與嘗試。

例如,摩根士丹利正在使用OpenAI驅動的聊天機器人來協(xié)助財務顧問,作為利用公司內部研究和數(shù)據(jù)存儲庫的知識資源。

對沖基金Citadel正在就企業(yè)級ChatGPT許可證進行談判,該許可證將用于軟件開發(fā)和信息分析。

費用管理平臺Brex也正在與OpenAI合作,為客戶推出了基于聊天的支出洞察和基準。彭博正在開發(fā)BloombergGPT,這是一種特定于金融的大型語言模型,用于情感分析,新聞分類和其他財務任務。

在國內,早在2月份,招商銀行就在官微發(fā)布了由ChatGPT參與的關于該行親情信用卡的宣傳稿,江蘇銀行則已經聯(lián)合應用ChatGPT與Codex技術,分析行內信息系統(tǒng)運行情況,自動化分析得出相關建議。

雖然ChatGPT出現(xiàn)了數(shù)據(jù)泄露情況,三星也成了使用ChatGPT導致商業(yè)數(shù)據(jù)泄露的典型。但金融商業(yè)對于生成式AI技術的態(tài)度以及應用,還是謹慎而樂觀的。

并且對于大部分企業(yè)來說,通過私有部署、安全防范、合成數(shù)據(jù)與穩(wěn)定自動化等手段,一些因素還可以做到可控范圍之內。

尤其是前幾天ChatGPT推出新的隱私功能后,只要關閉聊天記錄,用戶的數(shù)據(jù)不會被用來訓練和改進OpenAI的人工智能(AI)模型。這個功能,使得應用ChatGPT的組織數(shù)據(jù)泄露問題得到有效遏制。

近期還有一個信息值得思考,就是英偉達推出了NeMo Guardrails這樣的“護欄”軟件,防止生成式AI的隨意輸出和胡說八道。這可能意味著,為了更好的服務客戶及擴大市場份額,后面將會有更多企業(yè)推出限制與優(yōu)化生成式AI的軟件應用。

歐盟正在加速為生成式AI制定新規(guī)則,將會擬設立「AI 制作」標簽,這一做法將會給予生成式AI更多的監(jiān)管。

中國也已經起草《生成式人工智能服務管理辦法(征求意見稿)》并向社會公開征求意見。《辦法》明確國家支持人工智能算法、框架等基礎技術的自主創(chuàng)新、推廣應用、國際合作。因此,制定管理辦法正是為了未來更好地發(fā)展該技術,而不是限制該技術。

各個組織的舉措,正在把生成式AI推向有約束的正向軌道,這將非常有利于生成式AI在金融領域的大發(fā)展。

說了那么多關于生成式AI在金融領域的發(fā)展動向,到底生成式AI在金融領域有哪些應用?有什么優(yōu)勢?正在面臨什么樣的挑戰(zhàn)?

本文,王吉偉頻道就跟大家聊聊這些。

生成式AI在金融領域的應用

生成式AI是一種人工智能技術,它利用深度學習等方法,從大量數(shù)據(jù)中學習規(guī)律,并根據(jù)給定的條件或目標,自動生成符合要求的文本、圖像、音頻等內容的技術。

與其他人工智能技術相比,生成式AI的獨特之處在于它能夠創(chuàng)造新的內容。例如,生成式預訓練轉換器(GPT)是一種使用深度學習生成類似人類文本的大規(guī)模自然語言技術。

OpenAI的第三代GPT(GPT-3)已經能夠根據(jù)其吸收的訓練,預測句子中最有可能出現(xiàn)的下一個詞,能夠編寫故事、歌曲和詩歌,甚至計算機代碼。

鑒于這些優(yōu)勢,生成式AI在金融領域可以應用于多種業(yè)務場景,以下是幾個典型應用。

智能投顧:根據(jù)客戶的風險偏好、收益目標和資產狀況,為客戶提供個性化的投資建議和組合優(yōu)化。生成式AI可以利用大數(shù)據(jù)分析、深度學習和強化學習等技術,實時監(jiān)測市場動態(tài),調整投資策略,提高收益率和降低風險。

智能投研:生成式AI技術可以通過分析海量的金融數(shù)據(jù)、新聞、社交媒體等信息,為投資者提供股票、基金、債券等金融產品的評估和預測,以及投資策略和建議。

例如,摩根士丹利的AI模型可以分析新聞報道、社交媒體帖子和財務報表等,以識別模式并預測股價。ChatGPT等AI工具可以分析新聞標題對公司股價的影響,或者解讀央行的政策聲明對金融市場的潛在影響。

智能風控:通過分析客戶的信用歷史、行為特征和社會關系等數(shù)據(jù),為金融機構提供精準的風險評估和欺詐檢測。生成式AI可以利用圖神經網(wǎng)絡、對抗生成網(wǎng)絡和異常檢測等技術,挖掘潛在的風險因素,識別異常行為,防范金融損失。

保險科技:生成式AI可以根據(jù)客戶的需求、偏好和場景,為客戶提供定制化的保險產品和服務。生成式AI可以利用條件生成網(wǎng)絡、文本生成和圖像生成等技術,模擬不同的保險場景,生成適合的保險方案,提升客戶體驗和滿意度。

生成式AI的金融領域的應用場景遠不止這些。比如文心一言首批生態(tài)合作伙伴興業(yè)銀行,已經在智慧網(wǎng)點、智能服務、智能風控、智能運營、智能營銷、智能投研、 智能理財、智能客服等金融場景開展人工智能大模型技術應用。

隨著人工智能技術的不斷發(fā)展和創(chuàng)新,生成式AI將在金融領域發(fā)揮更大的作用,為金融業(yè)帶來更多的價值和機遇。

生成式AI在金融領域的應用案例

通過前面生成式AI在金融領域的應用場景,大家可以看到它在金融中有著廣泛的應用價值。生成式AI在提升金融服務效率和體驗、降低金融風險和成本、創(chuàng)造新的金融產品和模式等方面的作用。

為了便于大家理解,這里再列舉幾個具體應用案例。

案例1:應用于智能客服

智能客服是指利用生成式AI技術,通過語音或文本的方式,為金融用戶提供24小時在線的咨詢、辦理和解決問題的服務。

智能客服可以基于大模型技術,如ChatGPT等,結合金融行業(yè)的專業(yè)知識和數(shù)據(jù)進行交互式訓練,從而實現(xiàn)多輪復雜對話、自然語言理解和生成、情感識別和適應等能力。智能客服可以應用于信貸產品、理財產品、保險產品等多個業(yè)務環(huán)節(jié),大幅提升用戶滿意度和轉化率,降低人工成本和風險。

比如歐洲領先的移動銀行N26,就在其云環(huán)境中部署了基于生成式AI技術Rasa語音助手,可以在其移動和網(wǎng)絡應用程序中以五種不同的語言運行,并能夠處理信用卡丟失或被盜報告等復雜任務。通過調整機器學習模型,N26讓自己的數(shù)據(jù)集達到最佳性能,短短時間內就實現(xiàn)語言助手的客戶服務請求達到20%-30%。

案例2:應用于智能風控

智能風控是指利用生成式AI技術,通過海量數(shù)據(jù)的分析和建模,為金融機構提供有效的風險預警和預測,降低整個社會的金融風險。智能風控可以基于大語言模型技術,如LLM等,結合互聯(lián)網(wǎng)文本數(shù)據(jù)、行為數(shù)據(jù)和征信報告等數(shù)據(jù)進行解讀,從而識別出更多維度的風險指標,更好地評估小微企業(yè)主的信貸風險。

智能風控可以應用于信貸審批、貸后管理、反欺詐、反洗錢等多個環(huán)節(jié),大幅提升風控效率和精準度,降低不良率和損失。

點擊輸入圖片描述(最多30字)

案例3:應用于智能交互

智能交互是指利用生成式AI技術,通過多模態(tài)的方式,為金融用戶提供更豐富和更便捷的交互體驗。

智能交互可以基于多模態(tài)模型技術,如AutoGPT等,結合圖像、語音、視頻等多種媒體信息進行理解和生成,從而實現(xiàn)跨媒體的信息轉換和呈現(xiàn)。智能交互可以應用于金融營銷、金融教育、金融娛樂等多個場景,大幅提升用戶參與度和忠誠度,增加用戶黏性和收入。

智能交互不只應用于客戶,也適用于金融內部開發(fā)業(yè)務。

比如江蘇銀行科技團隊已經在ChatGPT的應用上進行了有益探索,科技人員聯(lián)合應用ChatGPT與Codex技術,分析行內信息系統(tǒng)運行情況,自動化分析得出相關建議。

代碼在生產環(huán)境運行,完美完成全部需求且僅耗費了不到1小時。編寫功能的時間大大縮短,而且原先需要與廠商對接溝通所耗費的時間由數(shù)天縮短到了數(shù)小時。

生成式AI在金融領域應用的優(yōu)勢和挑戰(zhàn)

經過研究人員與相關機構的探索與測試,在金融領域,ChatGPT等生成式AI工具已經可以廣泛應用與比如分析新聞對股價的影響、解讀政策聲明、輔助投資決策等。

總體而言,生成式AI在金融領域應用的優(yōu)勢大概有以下幾點:

提高效率和質量??焖俚貜暮A繑?shù)據(jù)中提取有價值的信息,生成高質量的報告、建議、策略等,節(jié)省人力和時間成本,提高金融服務的效率和質量。

增強創(chuàng)新和競爭力。利用海量的數(shù)據(jù),挖掘潛在的市場機會、風險和趨勢,為金融機構提供新的思路和策略,增強其創(chuàng)新能力和競爭力。

降低風險和成本。利用數(shù)據(jù)分析和模擬,預測市場變化和風險因素,生成合理的風險控制和應對方案,降低金融業(yè)務的風險和成本。

豐富用戶體驗和滿意度。根據(jù)用戶的行為和反饋,實時調整和優(yōu)化生成的內容,提供更貼合用戶需求和喜好的金融服務,豐富用戶體驗和滿意度。

增強創(chuàng)新和競爭力。根據(jù)不同的需求和場景,生成多樣化和個性化的內容,滿足客戶的多元化需求,增強金融產品和服務的創(chuàng)新性和競爭力。

盡管AI工具擁有極大的潛力,也面臨一些挑戰(zhàn)。

AI工具并不能考慮到所有因素,比如意外事件、市場狀況的變化以及人為干預。此外,關于這些工具如何做出決策,還需要更大的透明度。在使用這些AI工具時,還必須考慮到它們所提供的建議可能存在偏見或偏差。

生成式AI技術在金融領域應用面臨一些挑戰(zhàn),可以概括為以下幾點:

1、數(shù)據(jù)安全和隱私保護。生成式AI技術需要大量的數(shù)據(jù)作為輸入和輸出,這涉及到金融數(shù)據(jù)的安全性和客戶隱私的保護問題。如何防止數(shù)據(jù)泄露、篡改、濫用等,是一個亟待解決的問題。

2、技術可靠性和可解釋性。生成式AI技術依賴于復雜的算法和模型,其生成的內容可能存在錯誤、偏差、不一致等問題,影響其可靠性和可信度。同時,其生成過程往往缺乏透明度和可解釋性,難以讓用戶理解其原理和依據(jù),影響其可接受性和可監(jiān)督性。

3、法律法規(guī)和倫理道德。生成式AI技術在金融領域應用涉及到一些法律法規(guī)和倫理道德的問題,例如版權歸屬、責任歸屬、信息真實性、公平正義等。如何制定合理的規(guī)范和標準,保障各方利益和權利,是一個需要深入探討的問題。

為了更好地推廣和應用生成式AI技術,廠商和用戶都在尋求更好的解決方案。比如OpenAI已經為旗下ChatGPT推出了一項新的隱私功能,該功能允許用戶關閉他們的聊天記錄,從而讓對話更加私密。在聊天記錄被禁用的情況下,用戶的數(shù)據(jù)不會被用來訓練和改進OpenAI的人工智能(AI)模型。

未來隨著更多廠商推出相應的數(shù)據(jù)安全、技術可靠性以及法律法規(guī)等解決方案,加上社會各組織的監(jiān)督與監(jiān)管,生成式AI將會成為助力廣大組織數(shù)字化轉型與升級的利器。

后記:引入并有效利用生成式AI技術

生成式AI有這么多好處,金融企業(yè)又該如何引入這項技術?這還需要根據(jù)企業(yè)的具體需求和目標來制定合適的方案。

一般來說,引入生成式AI技術需要考慮以下幾個方面:

首先,數(shù)據(jù)準備。數(shù)據(jù)是生成式AI技術的基礎,企業(yè)需要收集和整理足夠多、高質量、有代表性的數(shù)據(jù),以供生成式AI模型進行訓練和測試。數(shù)據(jù)的來源可以是企業(yè)自身的業(yè)務數(shù)據(jù),也可以是從公開或第三方渠道獲取的數(shù)據(jù)。數(shù)據(jù)的格式和類型也要根據(jù)不同的生成任務進行選擇和轉換,如文本、圖像、音頻或視頻等。

其次,模型選擇。模型是生成式AI技術的核心,企業(yè)需要根據(jù)自己的生成任務和數(shù)據(jù)特點,選擇合適的模型架構和參數(shù)。模型的選擇可以參考已有的研究成果和開源代碼,也可以自行開發(fā)或定制模型。模型的選擇要考慮模型的性能、效率、穩(wěn)定性、可解釋性等因素。

第三,模型訓練。模型訓練是生成式AI技術的關鍵步驟,企業(yè)需要利用已有的數(shù)據(jù)對模型進行訓練和優(yōu)化,使其能夠學習到數(shù)據(jù)中的規(guī)律和特征,并能夠根據(jù)輸入條件生成符合要求的新內容。模型訓練需要大量的計算資源和時間,企業(yè)可以借助云計算平臺或專業(yè)的AI服務提供商來進行模型訓練。

第四,模型部署。模型部署是生成式AI技術的應用階段,企業(yè)需要將訓練好的模型部署到生產環(huán)境中,與其他系統(tǒng)或平臺進行對接和集成,為用戶或客戶提供生成式AI服務。模型部署需要考慮模型的兼容性、可擴展性、安全性等因素,企業(yè)可以使用容器化或微服務化等技術來實現(xiàn)模型部署。

最后,模型評估。模型評估是生成式AI技術的持續(xù)改進過程,企業(yè)需要定期對模型的生成效果進行評估和監(jiān)控,收集用戶或客戶的反饋和建議,分析模型的優(yōu)勢和不足,并根據(jù)實際情況對模型進行更新或調整。模型評估需要使用合理的評價指標和方法,如人工評價、自動評價、對比實驗等。

了解了生成式AI的技術特性以及優(yōu)缺點,最終我們需要探索的還是如何有效應用生成式AI。以下這幾點,適用于包括金融在內的所有行業(yè)。

明確目標和需求。不同的應用場景有不同的目標和需求,需要選擇合適的生成式AI模型和參數(shù),以達到最佳的效果。

選擇高質量的數(shù)據(jù)。數(shù)據(jù)是生成式AI技術的基礎,需要選擇高質量、高相關性、高多樣性的數(shù)據(jù),以提高生成內容的質量和可信度。

評估和優(yōu)化結果。生成式AI技術并不完美,可能會產生錯誤或不合理的內容,需要對生成結果進行評估和優(yōu)化,以提高生成內容的準確性和適用性。

遵守道德和法律規(guī)范。生成式AI技術可能會涉及版權、隱私、安全等敏感問題,需要遵守道德和法律規(guī)范,以防止濫用或誤用生成式AI技術。

【王吉偉頻道,關注AIGC與IoT,專注數(shù)字化轉型、業(yè)務流程自動化與RPA,歡迎關注與交流?!?/p>

申請創(chuàng)業(yè)報道,分享創(chuàng)業(yè)好點子。點擊此處,共同探討創(chuàng)業(yè)新機遇!

相關標簽
ai智能

相關文章

  • Manus官網(wǎng)突現(xiàn)“地區(qū)不可用”提示,中國區(qū)業(yè)務戰(zhàn)略性調整引關注

    四個月前邀請碼炒至10萬元,如今官網(wǎng)變灰、社交賬號清空,這家AI新貴的閃電遷移折射中國科技企業(yè)出海潮涌。7月11日,打開Manus官網(wǎng)的用戶發(fā)現(xiàn)一則突兀提示:“Manus在你所在的地區(qū)不可用”。而就在不久前,這個位置還顯示著“Manus中文版本正在開發(fā)中”的樂觀聲明。同時,Manus官方微博和小紅書

    標簽:
    ai智能
  • 摩爾線程估值超 250 億,「中國英偉達」沖刺科創(chuàng)板

    文/十界來源/節(jié)點財經一場圍繞算力自主的競賽,正在科創(chuàng)板上演。近日,國產全功能GPU廠商摩爾線程遞交科創(chuàng)板招股書,擬募資約80億人民幣,成為今年上半年科創(chuàng)板擬募資規(guī)模最大的沖刺者,也打響了“國產英偉達”上市的第一槍。據(jù)招股書顯示,摩爾線程自2020年成立以來,主營全功能GPU芯片的研發(fā)與銷售,以自主

  • 百川智能高管集體跑路!王小川的醫(yī)療AI還能贏嗎?

    “AI大模型六小虎”百川智能危機重重。這是前搜狗CEO王小川創(chuàng)辦的AI公司。昨天就爆出新聞,百川智能的聯(lián)合創(chuàng)始人離職,這是王小川入局AI的第一道大坎。接下的成敗非常關鍵:(1)拿下河北(2)學習科大訊飛百川智能離職高端概覽:(1)2025年7月10日,百川智能技術聯(lián)合創(chuàng)始人謝劍將離職。他是百川只能的

  • 百度智能云PaddleOCR 3.1正式發(fā)布:關鍵能力支持MCP

    百度AI團隊今日正式推出PaddleOCR3.1版本,以突破性的多語言組合識別(MultilingualCompositionPerception,MCP)技術為核心,徹底重構復雜文檔處理邊界。此次升級標志著OCR領域首次實現(xiàn)對同一文檔內任意混合語言文本的精準識別,為全球化企業(yè)、跨境業(yè)務及多元文化場

    標簽:
    ai智能
    ai技術
  • 宇樹科技加速沖刺科創(chuàng)板IPO,人形機器人龍頭估值飆至120億元

    “宇樹已形成硬件、算法、場景聯(lián)動的業(yè)務飛輪,自研率超95%的技術壁壘讓其成為全球機器人賽道不可忽視的中國力量?!笔壮藤Y本管理合伙人朱方文在追加投資時如是評價。7月7日,據(jù)每日經濟新聞從宇樹科技投資方處獲悉,國內人形機器人領軍企業(yè)宇樹科技(UnitreeRobotics)已明確計劃于科創(chuàng)板IPO,預計

    標簽:
    宇樹科技
  • OpenAI推出GPT-5:AI大統(tǒng)一時代的到來?

    推理與多模態(tài)的終極融合,將徹底終結用戶在不同模型間切換的煩惱。7月7日,OpenAI正式確認將在今年夏季推出新一代人工智能模型GPT-5。這一突破性產品將整合現(xiàn)有的多個強大模型,特別是融合專注推理能力的“O系列”與具備多模態(tài)功能的“GPT系列”,為用戶提供前所未有的統(tǒng)一體驗。OpenAI開發(fā)者體驗負

    標簽:
    chatgpt
  • 中小AI企業(yè),沒有“高考”資格

    高考一結束,忙壞了海內外一眾大模型。豆包、DeepSeek、ChatGPT、元寶、文心一言、通義千問……掀起了一波“AI趕考”大戰(zhàn)。據(jù)悉,去年高考期間,大模型的成績才勉強過一本線,今年集體晉升985。據(jù)悉,豆包甚至過了清北的錄取線。頭部大模型在高考“考場”上玩得不亦樂乎,中小AI創(chuàng)企的處境卻日益尷尬

    標簽:
    ai智能
  • 大模型搶灘高考志愿填報,能否頂替「張雪峰」們?

    文/二風來源/節(jié)點財經每年高考成績放榜后,數(shù)千萬考生和家長將迎來另一場硬仗——填報志愿。今年,這一領域迎來了AI的全面介入,多家互聯(lián)網(wǎng)大廠和教育公司紛紛推出智能志愿填報產品,為考生提供院校和專業(yè)選擇建議。據(jù)艾媒咨詢數(shù)據(jù),2023年中國高考志愿填報市場付費規(guī)模約9.5億元,近九成考生愿意借助志愿填報服

    標簽:
    大模型
  • 蘋果AI掉隊?現(xiàn)在唱衰或許還為時過早

    蘋果還沒從WWDC25的“群嘲”中走出,又迎來了一次新的痛擊。據(jù)路透社報道,21日,蘋果公司遭到股東集體起訴,被指在信息披露中低估了將先進生成式AI整合進語音助手Siri所需的時間,導致iPhone銷量受影響、股價下滑,構成證券欺詐。在這份訴訟中,庫克、首席財務官凱文·帕雷克及前首席財務官盧卡·馬埃

  • DeepSeek、豆包向左,盤古大模型向右

    華為的盤古大模型終于推出新版本了。6月20日華為云計算CEO張平安宣布基于CloudMatrix384超節(jié)點的新一代昇騰AI云服務全面上線,盤古大模型5.5同步發(fā)布。不過,當前國內的AI大模型競爭可謂是相當激烈,華為的盤古大模型在眾多大模型中并不是十分出眾。華為云此次重磅推出的盤古大模型5.5能否從

編輯推薦